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ABSTRACT

A multi-dimensional sequence is not, in general, uniquely defined in

terms of only the phase or magnitude of its Fourier transform. However, in

this paper some conditions are developed under which a multi-dimensional

sequence is uniquely defined by its phase. A similar set of conditions are

then developed for the unique specification of a multi-dimensional sequence

in terms of its Fourier transform magnitude. In both cases, it is initially

assumed that either the phase or magnitude is known for all frequencies. The

results are then generalized to the case in which the phase or magnitude is

known only for a finite set of frequency values.
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I. INTRODUCTION

Under a variety of conditions, a multi-dimensional (m-D) sequence may be

reconstructed from partial information about its Fourier transform. For example,

if an m-D sequence x(nl,... ,n) is zero whenever any of the indices nk for

k=l,...,m are negative, then x(nl,... nm) can be exactly recovered from the real

part or, except for x(O,...,O), from the imaginary part of its Fourier

transform [1. If, on the other hand, x(ni,...,nm) is minimum phase 121, then

it can be recovered from the magnitude L. to within a scale factor, from the

phase of its Fourier transform.

The reconstruction of an m-D sequence from such partial information is

important and useful in many applications. For example, in some cases of

optical image processing or in the measurement of diffraction patterns, only

spectral magnitude information can be recorded or is available. Therefore, it

is of interest to recover a signal from only spectral magnitude information in

these cases. In other situations, either the spectral magnitude or phase of a

signal may be severely distorted so that the restoration of the signal must rely

on the undistorted component. For example, in the class of problems referred to

as blind deconvolution (31, a signal is to be recovered from an observation which

is the convolution of a desired signal with some unknown signal. Since little

is usually known about either the desired signal or the distorting signal,

deconvolution of the two signals is generally a very difficult problem. However,

in the special case in which the distorting signal is known to have a Fourier

transform which is purely real, the tangent of the phase of the observed signal

is identical to the tangent of the phase of the original signal. Such a situation

occurs, at least approximately, in long-term exposure to atmospheric turbulence

. . .. . . . . . . . . . I l II1I I I I I II . .



or when images are blurred by severely defocused lenses with circular aperture

stops [41. In this case, it is of interest to consider signal reconstruction

from phase information alone.

This paper is concerned with the development of some conditions under which

an m-D sequence is uniquely defined by its Fourier transform phase or magnitude.

In general, of course, phase or magnitude information alone is not sufficient

to uniquely specify an rn-U sequence. For example, any m-D sequence may be

convolved with a zero phase sequence to produce another m-0 sequence with the

same phase. Similiarly, any m-D sequence may be convolved with an all-pass

sequence to produce another m-D sequence with the same magnitude. Therefore,

without any additional information or constraints, the Fourier transform phase

or magnitude may, at best, uniquely specify an m-D sequence to within a zero

phase or all-pass convolutional factor, respectively. Nevertheless, with a

few basic results from the theory of polynomials in several variables, some

useful conditions may be derived under which an rn-C sequence is uniquely defined

by the phase or magnitude of its Fourier transform. These conditions, which are

distinctly different from the minimum or maximum phase constraints, imply that

most rn-C sequences with finite support are recoverable from either their phase

or magnitude.

This paper is organized as follows. In Section II, the necessary results

from the algebra of polynomials in more than one variable are briefly reviewed.

Some notation and terminology related to multi-dimensional signals is then

presented in Section III. In Section IV, conditions are developed under which

an m-D sequence is uniquely defined in terms of the phase or magnitude of its
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Fourier transform. Although these conditions are initially derived under the

assumption that either the phase or magnitude is known for all frequencies,

they are then extended to the case in which the phase or magnitude

is known only over a finite set (lattice) of points.

3
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Il. POLYNOMIALS IN MORE THAN ONE VARIABLE

In this section, some notation and terminology related to the algebra of

polynomials in more than one variable is reviewed. In addition, two theorems

are presented which are of considerable importance in many multi-dimensional

signal processing applications and will be referred to frequently in this paper.

Proofs of these theorems as well as a detailed treatment of many topics not

presented in this section may be found in 151.

A monomial is a function of n variables of the form:

k1  k kn 1
f =c z1 1 2 2. -Znn

where k1,k 21". k are non-npgative integers and c is an arbitrary number which

is referred to as the coeffi~ient of the monomial. The degree of the monomial

is defined as

d(f) =k 1 + k 2 + ... + kn (2)

A polynomial is then 'simply a sum of a finite number of monomials. In this

paper, a polynomial will be referred to as being non-trivial if it consists of

a sum of two or more monomials. A trivial polynomial is therefore either a

constant or a monomial of non-zero degree.

The coefficients of the monomials which define a polynomial are called the

coefficients of the polynomial and the degree of the polynomial is the degree

of the monomial with the highest degree. Any polynomial p in n variables of

degree N may therefore be written in the form:

4



kI k2  kn
p= ' C(k,...,kn) z

1 z2 .--Zn (3)

k+ .+k < N
1*. n-

It is often useful to consider p in (3) as a polynomial in one variable,

say z., with coefficients which are polynomials in the remaining (n-1) variables.

For example, p in (3) may be written as

N

k=O

where p,(k) for k=0,I,...,N are polynomials in the (n-l) variables zn for nty.

In this form, the largest value of k for which 4 (k) is non-zero is referred

to as the degree of p with respect to the variable z. and will be denoted by

d£(p).

If all the coefficients of a polynomial p belong to a particular number

field, , then p is called a polynomial over the field 6r The set of all

polynomials in n variables over a field .- form a ring which is denoted by

(z1,...,9zn). If two polynomials p, and p2 in J(z 1 Z... n) are such that

P1=cpl where ce,9and is non-zero, then p, and P2 are called associated

polynomials. A polynomial pcr(z1 ,...,zn) with d(p)>O is called a reducible

polynomial over the field $'if there exists polynomials pP2 cg(z1,...,Zn)

such that p=p1P2 with d(pl) > 0 and d(P2 ) >0. If no such decomposition is

possible, then p is called an irreducible polynomial. It is of interest to

note that, as a consequence of the Fundamental Theorem of Algebra, the only

polynomials in one variable over the field of complex numbers which are

5
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irreducible are polynomials of first degree. This result, however, is not true

in general. Over the field of real numbers, for example, the polynomial

p(z)=z +1 is irreducible. Even over the field of complex numbers, the polynomial

p(z1,z2 )=z +z2 is irreducible. This second example illustrates, in particular,

the fact that the Fundamental Theorem of Algebra does not hold for polynomials

in more than one variable.

The first theorem of interest in this paper asserts that any polynomial of

non-zero degree can be uniquely decomposed, to within factors of zero degree,

into a product of irreducible polynomials. More specifically,

Theorem 1: Any polynomial p'(zl,... ,zn) having non-zero degree

can be expressed as a product of factors irreducible in .

Furthermore, if p has two different factorizations:

P = f1 f 2 -"fm =  gl g2" "gn (5)

then m=n and the factors fi and gi can be ordered in such a way

that the factors are associated.

It is well-known [5] that a polynomial p(z) in one variable of degree Nl N
is uniquely defined in terms of its values over a set A =ak k=O of N+1

distinct points. This result has a natural extension to polynomials in more

than one variable which asserts the uniqueness of a polynomial p cF(zl,... ,zn)

in teims of its values over an n-dimensional lattice of points. An n-dimensional

6
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lattice is an extension of a single set of points, A, to an n-fold Cartesian

product of n sets of points, Ak, for k=l,...,n. Specifically, let Ak=(ak dZNk

be a set of Nk distinct points in the field g. for k=l,...,n. Then the

n-dimensional lattice Y(AI,...,An) is defined as

n

Y(AI,-.,-An) [1 Ak = A1 x A2 x ... x An  (6)

k=1

The result of interest may now be stated as follows:

Theorem 2: Suppose p,p 2 P'(z 1 ,... ,z n ) with dk(pl) < Nk and

dk(P 2 ) < Nk for k=1,...,n. Let Ak be a set of Nk distinct points

in the field . If p, and P2 are equal over the set (lattice) of

points Y(AI,...,An), then p1=P2 .

This theorem will be used in deriving some conditions for the uniqueness of a

multi-dimensional sequence in terms of a finite set (lattice) of values of

either the phase or magnitude of its Fourier transform.

7
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III. FRAMEWORK

This paper is concerned with the uniqueness of a multi-dimensional sequence

with real coefficients in terms of either the phase or magnitude of its Fourier

transform. Although the results which are presented apply to sequences of

arbitrary dimension, all discussions are phrased in terms of two-dimensional

sequences, x(nl,n 2 ), in order to simplify notation. In this section, some

notation and terminology related to 2-D sequences is presented and the general

framework of the uniqueness problem is established.

The z-transform of a two-dimensional sequence, x(nln 2 ) is defined by

nI n2

X(zl,z 2 ) x(nl,n 2 )z I z2 (7)
n I n 2

and the Fourier transform, denoted by X(wIw 2 ), is equal to X(zl,z 2) on the unit

bi-disc zI1 = jz2J = 1, i.e.,

X(wIw2) X(zlz 2) zl=exp(jwl) (8)

z z2=exp (jw2 )

Written in polar form, X(Wlw 2) is represented in terms of its magnitude and phase

as

X(wIw 2) = IX(wlw 2)Iexp[jx(wilw 2)] (9)

where it is assumed that the phase is defined by its principal value. Therefore,

in terms of (9), this paper considers the uniqueness of x(nl,n 2) in terms of

x(W1,w2) or IX(w 1 ,w2 )I . Although initially it is assumed that either the phase

or magnitude is known for all values of w, and w2, the results are then extended

to the case in which the phase or magnitude is known only over a finite set of points.

8
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Most of the sequences which are considered in this paper have finite

support, i.e.,x(nl,n 2) is non-zero only for finitely many values of its arguments

nI and n2. A sequence with finite support is said to be of extent N1xN2 if

x(nn) outside a rectangular region of the form [K0 ,K0+Nl-l) x (L0 ,L0+N2-1)xnn2)=O[KoI-] [oo+-1
for some K and Lo. For the special case in which K and Lo may be taken to be

* equal to zero, x(nl,n 2 ) is said to have first quadrant support and the region of

support is denoted by R(N 1,N2 ), i.e.,

W(NIN 2 ) = [0, N1-1) x [0, N2 -1) (10)

Throughout this paper, any sequence with finite support may be assumed, without

any loss in generality, to have first quadrant support. In the general case, a

sequence may simply be shifted in order to satisfy this assumption. Consequently,

the set F(n1,n2 ) will be used to denote the collection of all real 2-0 sequences

of finite extent with first quadrant support. The notation xc F(nl,n2) will

therefore mean that the sequence x(nl,n 2 ) has support W(N1 ,N2 ) for some N, and

N2 . Since the z-transform of a sequence xE F(nl,n2 ) is a polynomial in two

variables, zI and z2, X(Z1,z2) is an element of I'(zl,z2 ) over the field of

real numbers:

x c F(nl,n 2 ) -t-- e, X (ZlZ 2 )  (11)

Now, suppose that x eF(nl,n2) and has an irreducible z-transform of degree

N1 in zI and N2 in z2 and consider the sequence xe F(nl,n2 ) defined by

9
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x(nl,n2)  ( N -nl, N2-n2) (12)

The z-transform of x(n ,n2) is also irreducible and is given by

N1 N2
X(Zlz 2) z1  z2  X(zll,z21) (13)

A special class of sequences which will play an important role in the following

sections consists of those sequences for which

x(n=,n2) ix(nln (14)

or,

X(ZlZ 2) = ±b(zl,z2) (15)

Since (nl,n 2) corresponds to a 1800 rotation of x(nl,n 2), sequences which

satisfy (14) are, except possibly for a minus sign, invariant under 1800

rotations. Therefore, these sequences will be said to be symmetric or to have

symmetric z-transforms. It should be noted that a 1-D sequence which has a

symmetric z-transform has all of its zeros (excluding those at z=O or z1=o)

on the unit circle or in reciprocal pairs. Therefore, (14) represents an

extension of this property to 2-D sequences. It may also be noted that except

for a linear phase term of the form exp[ j(N1WI+N 2W2)], the Fourier transform

of a symmetric sequence is either purely real or purely imaginary.

An important property of a sequence x eF(nl,n2) is that its z-transfori

need only be known over a finite set of points in order to uniquely specify

the sequence. Although these points can not be chosen arbitrarily, Theorem 2

10



in Section II provides one set of points which is sufficient for this

specification. More specifically, the following lemma is a direct consequence

of Theorem 2:

Lema: Suppose x,y F(nl,n 2) with support W(N 1 ,N2 ). Let

Ak={ak 21I be a set of Mk distinct complex numbers for k=1,2

with M> N1 and M2 >N2. if

X(zi Y(zz 2) 21(AI,A 2) (16)

then x(n1 ,n2 ) =y(n
l,n2) for all nI and n2.

Of particular interest in this paper, however, is the case in which the

elements of the sets Ak have unit magnitude. Specifically, consider the sets

= with 0 <BkY< 21 (17a)Z=1
Ak exp( jk,y k (17b)

where the elements of 2k for k=1,2 are assumed to be distinct. Then

X(ziz 2)f £W(A 1 ,A2 ) = X(wo1,(2) Q2 (18)

represents the Fourier transform of x(nl,n2 ) evaluated over the lattice

*219(12) in the wlw 2-plane. If, in addition, the numbers ak, are equally

11



spaced between 0 and 2,T, i.e., d £=27ri./Mk then (18) represents the M xt4-on

-~IDiscrete Fourier Transform (DFT) of x(n,,n 2). In this case, the M 1xM 2-point OFT

-will be denoted by X(kilkMM:2

X-il XIr1)2M = Zl XZ 1Jz,=exp(j27rk1/M1) (19)

z = exp(j2ffk /M)

*which, when expressed in terms of its magnitude and phase, will be written as

X(kilk 2)MM2 = IX(kilk 2)IM5M 2exp[j~x (kilk 2)M19 2 (20)

In the following sections, when the length of the DFT is assumed to be known

or when it is explicitly stated, the subscripts in (20) will occasionally be

dropped.

12



IV. THE QUESTION OF UNIQUENESS

in this section, the results from Section II are applied to the question

of the uniqueness of a 2-D sequence in terms of the phase or magnitude of its

Fourier transform. In Section 4.1, conditions are given under which a 2-D

sequence with finite support is uniquely specified in terms of the phase of its

Fourier transform. A similiar set of conditions are given in Section 4.2 for

the uniqueness of a 2-D sequence with finite support in terms of its Fourier

transform magnitude. In Section 4.3, the results in Sections 4.1 and 4.2 are

used to generate a set of conditions under which a 2-D sequence with finite

support in uniquely specified in terms of either its Fourier transform phase

or magnitude. in addition, the generalization of these results to 2-D

sequences whose convolutional inverses have finite support is described.

4.1 Uniqueness in terms of phase

It has recently been shown (6] that a 1-D finite length sequence x(n) is

uniquely specified to within a scale factor by the phase or the tangent of the

phase of its Fourier transform if X(z) has no zeros on the unit circle or in

reciprocal pairs, i.e., if X(z) contains no symmetric factors. This result may

be directly extended to the case of multi-dimensional sequences. This extension,

in terms of 2-D sequences is as follows:

Theorem 3: Let x,yE F(nl,n 2). If X(z1,z2) and Y(zl,z2) have no

symmetric factors and

x ('iR2) = y(W19w2) (21a)

13
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fo al2wan then y(n1,Sn)= x(n1,n) for some positive

number a. If, on the other hand,

tan 0, x(W1,W 2) = tan Oy(wl.w2) (21b)

for all wand w2 then y(n1,3n ) = x(n1,n ) for some real number ~

it should be noted that the symmietric factors which are excluded from X(z1.z2)

and Y(z1,z2) in this theorem need not be irreducible. For example, if A(z19z2)

is a polynomial and X(z1,z2)=P(z1,z2)Q(z1,1z2 ) where Pz1z)Az'2"(1z)

then x(n1,n2) does not satisfy the constraints of the theorem since P(z1,z2) is

a (reducible) synmmetric factor of X(z,Sz 2). In effect, the exclusion of symmnetric

factors from a sequence x cF(n1,n2) is equivalent to the constraint that if

A(z1 ,z 2) is an irreducible factor of X(z,9z2) then A(zt,,z) is not a factor of

X(z1% ,2).

An outline of a proof of Theorem 3 is as follows. Let x,yF-F(n1 ,) and

let N be a positive integer which is sufficiently large so that x(n19n2) and

y(n1,n2) are both zero outside the domain4 ROMN. Consider the sequence

hMn 1,n2  = x(n1,n2) y(-n1,-n2) (22)

which has a z-transform given by

H(z1,z2) =X(zI1z2) Y(z1~ 1) (23)

14



By noting that the phase of h(nln 2) is given by

.h(WlW2) = (xw1 ,w2) _ y( lw, 2) (24)

it follows from (21a) that h(wl,w 2)=O or from (21b) and the trigonometric

identity

tana + tans
tan(ot+0) (25)

1 ; tan atanS

that tan wh(wi,2) = . In either case, the Fourier transform of h(nl,n 2) is

purely real which implies that

h(nl,n 2) = h(-n l ,-n2) (26)

Therefore, from (23) and (26),

X(zlZ 2) Y(zl z 1) = X(zil,z2l) Y(z1,z2) (27)

-N
Multiplying both sides of (27) by (z 1z2) results in the following polynomial

equation:

k1  k2  z £1 L2
X(zlz 2) Y(zlz 2) z1  z2 = X(z 1 ,z2) Y(z1,z2) Z1 z2  (28)

where k1,k2 , i1 , and 92 are non-negative integers. Now consider an arbitrary

non-trivial irreducible factor X k(z11z2) of X(z1 ,z2). From Theorem 1 in

15
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Section 2, it follows that Xk(Zl,Z2 ) must be associated either with a factor of

X(zl,z2) or with a factor of Y(zl,z2). However, if Xk(zl,Z2) is associated with

a factor of Xk(zl,z2) then

Xk(zl,zz) = (zz 2) (29)

for some Z. If Z=k then (29) implies that

Xk(ZlZ 2) = a2 Xk(ZlZ 2) (30)

Therefore, = .I and Xk(Zl,Z2) is symmetric. If, on the other hand, k$9 then

Xk(ZIZ 2) XY(Zl,z2 ) = aX(zlz 2) X.(zlz 2 ) (31)

In other words, both X (zl,z2 ) and X,(Zlz 2) are factors of X(zlz 2). Both

cases, however, are excluded by the theorem hypothesis. Consequently, each

non-trivial irreducible factor of X(zl,z 2) must be associated with a factor

of Y(zl,z 2). Therefore, Y(zl,z2 ) is of the form:

m29z2 ] X(Z1,Z2) (32)
F~~1 z~1 z) [l~ P(zj1z 2) I~ 1, 2

Y(I')  z 1 z2 2

where mI and m2 are integers and P(zl,z2) is a polynomial. However, as in the

steps leading to (26), (21) requires that the term in brackets correspond to a

sequence with a real Fourier transform. This, in turn, implies that P(z1 ,z2 )

16
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is symmetric which, since Y(zl,z 2) contains no symmetric factors, requires that

P(zlZ 2) be a constant:

m2 m2

Y(zlz 2) z z2  X(z1 ,Z2) (33)

Again using (21) it follows that ml=m2=O and the desired result follows by

noting that must be positive in the case of hypothesis (21a).

It may be apparent at this point that it is not necessary to assume that

(21) holds for all 1 and w2 in order to prove the theorem if the regions of

support of x(nl,n2 ) and y(nl,n 2) are known. More specifically, suppose that

x(n1,n2 ) and y(n,,n2 ) are known to be zero outside the domain R(NI,N2).

If M>2(N1
"I) and M2 >2(N 2-1) and if (21) is replaced with the constraint

that the phase or tangent of the phase of the M1xM2-point DFT's of x(nl,n 2)

ana y(nl,n2 ) are equal, then Theorem 3 still remains valid. This follows first

from the observation that h(nl,n 2) in (22) is zero outside the region

[(I-NI),(NI-1)]x[(1-N2),(N2-1) ] .Therefore, the MlxM2-point DFT of h(nl,n 2 )

equals the product of the M1xM2-point DFT's of x(nl,n 2 ) and y(nl,n2 ). Thus,

h(klk2)MM = x(k1,k2) - ciy (kl,k2) (34)
M,2  M, 2  M, 2

and (27) follows as in the proof of Theorem 3. Proceeding as in Theorem 3, it

follows that Y(z1 ,z2 ) and X(zl,z 2) are related by (32). However, the constraints

on the phase of the M1xM2-point DFT's of x(nl,n 2) and y(nl,n2 ) imply that the

term in brackets in (32) corresponds to a sequence with a real M1xM2-point DFT.

Therefore, in a style similiar to that in Theorem 3, it follows that the term

17



in brackets in a constant. Therefore a corollary to Theorem 3 is as follows:

Corollary 3.1: Let x,yE F(nl,n 2) with support W(N 1 ,N2). If

X(z1 ,z2) and Y(zl,z 2) have no symmetric factors and

y(kl,k 2) = x(kik 2)MI, (35)

with M1 >2(N1-1) and M2 >2(N2-1), then y(nl,n 2)= x(n
l,n2) for some

positive number B. If, on the other hand,

tan y(klsk 2)M1M 2 = tan cx(ki,k2)MM2 (36)

then y(nl,n 2)= ax(nl,n2) for some real number B.

The importance of this corollary lies in the fact that it allows for the

development of practical algorithms for reconstructing a sequence from the phase

of its DFT.

4.2 Uniqueness in terms of magnitude

In Section 4.1, the uniqueness of a multi-dimensional sequence in terms of

the phase of its Fourier transform was considered. This section addresses the

dual problem related to the uniqueness of a multi-dimensional sequence in terms

of its Fourier transform magnitude. Perhaps the first treatment of this question

18
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$b

of uniqueness may be found in (71 where the uniqueness of a 2-0 sequence

xE:F(nl,n2 ) is stated to be related to the irreducibility of its z-transform.

in this section, a slightly more general result is derived which includes

sequences with irreducible z-transforms as a special case. Even more importantly,

however, as in section 4.1, the uniqueness of a sequence xE:F(nl,n2 ) is also

considered when the magnitude of its Fourier transform is known only over a

finite set (lattice) of points.

Consider a sequence xE F(n1,n2 ) for which IX(l,w92)I is known for all

W and w2" Since the inverse Fourier transform of IX(w1,w2)12 is the auto-

correlation, rx (nl,n 2), of x(nln2):

rx(nI,n 2) = x(nl,n 2) * x(-nl,-n 2) (37)

the specification of IX(w1,w2)1 is equivalent to the knowledge of rx(nl~n2) or

its z-transform:

Rx(ZlZ 2) = X(zl,z 2) X(z 1,z 
I) (38)

For any xe F(nl,n 2), the most general form for its z-transform, X(zl,Z 2)

is given by

m m (

X(Zl,Z 2 ) = az 1Z 2 2 - Xk(Zl,Z2)  (39)

k=1

where 6 is a real number, m1 and m2 are non-negative integers, and Xk(zl,Z2)
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for k=1,...,p are non-trivial irreducible polynomials. Substituting (39) into

(38) gives

p
R Z1z 2 Xk(Z1 1,z21) (40)

Rx(ZlZ 2) = 2 Xk(Zl,Z 2) k(zZ2

k=1

Now suppose that the polynomial

p
P(z1,Z2 ) = [1 Xk(ZI,Z 2 ) (41)

k=1
N 1  N2  ~2*N 1 N2

is of degree N1 in z and N2 in z2 . Multiplying Rx (zlz 2) by zN z2 yields a

polynomial in z and z2 which has degree 2N1 in z and 2N2 in z2

Q (z N1 N2 R l/2 (42)

x z2) = z, 2 Rx(ZlZ 2) = n- Xk(ZlZ 2) ,z2)
k=1

It is apparent that the polynomials Qx(zl,z 2 ) and IX(wlw 2)I contain exactly

the same information about x(nl,n 2) since one may be uniquely derived from the

other. Therefore, the ability to uniquely recover x(nl,n 2) from IX(wlw2)1 is

equivalent to the ability to uniquely recover X(zlz 2 ) from Q,(71,z2 ). With this

in mind, it follows that x(nl,n 2) cannot be unambiguously recovered from magnitude

information alone. For example, the sign of a as well as the linear phase term
m1 m2
z z2  is not recoverable from Qx(z Even more importantly, however, is

the observation that, without additional information, it is not possible to

determine whether Xk(zl,Z2) or xk(zl,z2 ) is a factor of X(zl,z 2). This ambiguity

is not surprising, however, since it represents a 2-D extension of a familiar
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result for 1-D sequences 181. Specifically, for any finite duration sequence

x(n), another sequence y(n) may be generated which has the same Fourier transform

magnitude as x(n) by simply reflecting a zero of X(z) about the unit circle.

For 2-D sequences, Xk(zl,z 2) represents the reflection of the zero contour of

Xk(zl,z 2) about the unit bi-disc Iz 11= 1z2 1 =1.

It will be useful in the following discussions to define an equivalence

relation on the set F(nl,n 2 ) as follows:

y(nl,n 2) " x(nl,n 2 ) if y(nl,n 2) =±x( k 1 n1 , k2± n2 ) (43)

for some integers kI and k2. In other words, the equivalence class generated

by a sequence x(nl,n 2) is defined to be the set of all sequences which may be

derived from x(nl,n 2 ) by a linear shift, a time-reversal, or by a change in

sign of the sequence. Note that all of the sequences within a given equivalence

class have the same Fourier transform magnitude. Thus, it will be convenient to

refer to the Fourier transform magnitude of the sequences within an equivalence

class as the Fourier transform magnitude of the class.

In general, there will be more than one equivalence class having the same

Fourier transform magnitude. More specifically, given a sequence x EF(nl,n2)

there may exist another sequence yE F(nl,n 2) with the same Fourier transform

magnitude as x(nl,n2 ) but which is not in the same equivalence class as x(nl,n2).

Therefore, the goal of this section is to determine a set of conditions which

guarantee the existence of only one equivalence class with a given Fourier

transform magnitude. The first question to be addressed, however, concerns the
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number of equivalence classes which have a given Fourier transform magnitude.

Once this has been established, conditions which guarantee the existence of only

one equivalence class may easily be determined. The answer to this first

question is implied by the following theorem:

Theorem 4: Let xe F(nl,n 2 ) with a z-transform given by

m m2X(z1,-Z2  z 1  m. p (44)
2 )  1 2  F1 Xk(Zl,Z2)

k=1

where Xk(zlZ 2 ) are non-trivial irreducible polynomials for

k=l,...,p. If yEF(nln 2 ) and

iX(w,w2)1 = IY(w'1,w2)1 (45)

for all w and w2, then Y(z1,z2) is of the form:

41 -1X219Y(zlz 2) = t zI z2 - k(ZlZ 2)  - Xk(Zl,Z 2) (46)

kcl ktI

where I is a subset of the i-ntegers in the interval [1,p].

This theorem is simply a statement of the fact that the only way to

generate a new sequence, y(nl,n 2), which has the same Fourier transform

magnitude as x(n ,n2) is to convolve x(nl,n2 ) with an all-pass sequence,

h(n1,n2 ), i.e.,a sequence with IH(w1,W2 )I = 1 for all w and w2. However,
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any all-pass sequence with a rational z-transform is of the for'm:

+~1 2  Z I z 2 TT H 1 (zl9z ) Hk(zl~z2  (47)

k= 1

Therefore, given a sequence xe-F(n1 ,n ) with a z-transform of the form (44),

y(n1,n 2) =x(n1,n 2) *h(nl,n 2) has finite support if and only if for each k,

Hk(zllz 2 )=X2(z 2 ) for some IF_[i,p]. Consequently, Y(z1,z2) must be of the

form given by (46).

An outline of a proof of this theorem is as follows. With x,y cF(n1 ,n 2),

let N be an integer large enough so that x(n1,n 2) and y(n1,n2) are zero outside

the domain A9NAN. From (45) it follows that

X(z1,z2) X(zll, 2 ) = Y(zl'z 2) Y(zl ,z~ ) (48)

Therefore, let the z-transform of y(n1,n 2) be given by

Y(z1 9z 2) = a Z1 2  TT Y~lz(49)

k= 1

where Y k (Zz 2) are non-trivial irreducible factors for k=1,.. ,q. Substituting

(44 and (49) into (48) and multiplying by (z z )N yields the following equation:

2 M1 M2 P2 lLq

a zi Z2 Iflxk(zl'z2)Xk(zl'z2) = 'D z I 2 IlYk (z~z 2)Yk(zl'z2) (50)

k=1 m

where M1, M2, L1, and L2are positive integers. From Theorem 1 in Section 2, it
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follows that M =L1, M2 L2 , and p=q:

p q

2 T Xk(Z 1 Z2) Xk(ZlZ2) 
=  [ Yk(ZlZ 2) Y k(Zl,Z2) (51)

k=1 k=1

Again from Theorem 1, it follows that the factors Yk(zl,z2) may be ordered in

such a way that Yk(zl,z2) is associated with either Xk(zl,z 2) or Xk(zl,z2) for

each k. Therefore, from (49) and the fact that (45) implies a=± a, the desired

result (46) follows.

It should be noted that, as a consequence of this theorem, all sequences

in F(nl,n 2) with a given magnitude, IX(w1,w2)1, have z-transforms with the same

number, p, of non-trivial irreducible factors. Furthermore, except for a scale

factor of (-1) and linear shifts, the only way to generate another sequence

y(n,,n 2 ) in F(nl,n 2) with the same magnitude as x(nl,n 2 ) is to replace one or

more non-trivial factors Xk(zl,z2) of X(z1 ,z2) with Xk(zl,z2). However, if

Xk(Zl,z2) is symmetric, then the replacement of Xk(zlz 2) with Xk(Zl,Z2 ) may

only change X(zl,z2 ) by a factor of (-1). Therefore, it follows that the number

of equivalence classes with magnitude IX(w ,w2)I is at most 2(p'I) where p is

the number of non-symmetric irreducible factors in X(zlz 2 ). Thus, the following

is an immediate consequence of Theorem 4:

Theorem 5: Let xE:F(nl,n2 ) have a z-transform with at most one

irreducible non-symmetric factor, i.e.

p
X(ZlZ 2) = P(zl'z 2) T Xk(ZlZ2) (52)

k=I
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where Xk(ZlZ 2 ) for k=1,...,p are irreducble symmetric factors. If

ye F(n,n 2) with

!Y(w1,w2 )1 = IX(i,w2 )I (53)

for all w, and w2 , then y(nln 2) %x(nl,n 2).

As in Section IV, it may be apparent that the assumption that (53) holds

for all w, and w2 in this theorem is not necessary if x(nl,n2) and y(nl,n2) are

known to be zero outside some given domain. More specifically, suppose that for

some NI and N2, x(nl,n 2) and y(nln 2) are known to be zero outside the domain

(N1,N) Let Qk and Ak be sets of Mk distinct points as defined in (17) for

k=1,2 and let Y(SI,'2) and N(A,A 2) be the 2-D lattices generated by these

sets. Note that if

S( 1'2) = ) (54)

then

Qx(zlz 2 )1  (A,A2) =Q y(ZlZ 2 )j (A1,A2) (55)

where Qx(zZ2) and Qy(Zlz 2) are polynomials, as defined by (42), of degree at

most 2(N1-1) in zI and 2(N2-1) in z2. Therefore, if M1 >2(N1 -1) and M2 >2(N2-1)

then it follows from Theorem 2 that Qx(zl1z2) Qy(Zl,Z 2) for all zI and z2. Thus,

(54) implies that(53) holds for all w and w2. Consequently,
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Corollary 5.1: Let x,ye F(n1 ,n2) with support W(Nl,N2 ). If X(Z1 ,Z2 )

has at most one irreducible non-symmetric factor and

Ny(l, w2)j ( = jX(w 1, 2)1  (sl1'n2) (56)

where is a set of Mk distinct real numbers in the interval (0,2w)

with Mk>2(Nk-1) for k=1,2, then y(nl,n2)vx(n l,n2).

A special case of this theorem results when the points in the sets ik

are equally spaced between 0 and 2w. In this instance,

IX(klk 2) I  (57)IX(wI'w2) I  I ) 2

is the magnitude of the MXM2-point DFT of x(nl,n2). Therefore,(5 6) may be

replaced with the constraint:

IY(klk2)MIM2 = X(klk2)IM1,M2 (58)

4.3 Extensions

In Section 4.1, a set of conditions are presented under which a 2-0

sequence is uniquely defined to within a scale factor by the phase of its Fourier

transform. A simlilar set of conditions are presented in Section 4.2 which allow

a 2-D sequence to be uniquely specified by the magnitude of its Fourier transform
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3to within a delay, a sign, and a 1800 rotation. It is of interest to note that

these uniqueness constraints are not mutually exclusive. Specifically, if

x eF(nl,n2 ) has a non-symmetric irreducible z-transform, then x(nl,n 2) satisfies

the constraints of Theorems 3 and 5. Therefore, the following result is a direct

consequence of these theorems:

4r

Theorem 6: If x eF(n,n 2 ) and has a non. ;3ymetrlc irreducible

z-transform, then x(nl,n2) is uniquely specified (in the sense of

Theorems 3 and 5) by either the phase or magnitude of its Fourier

transform. If, in addition, x(nl,n 2 ) is known to have support

(N1,N 2), then the phase or magnitude of the M1xM2-point DFT of

x(nl,n2) is sufficient for this unique specification provided

MI > 2(N1-1) and M2 > 2(N2 -1).

Since a non-symmetric irreducible z-transform is a sufficient constraint

for a sequence xE F(nl,n 2) to be uniquely defined by either its magnitude or

phase, it is of interest to determine how restrictive this constraint is. In

other words, given an arbitrary 2-D sequence, is it likely that its z-transform

is non-symmetric and irreducible? An answer to this question may be found by

considering the set 9of all polynomials in two variables which have degree

N 1  in z and N2 >1 in z2. With N=(N1 +1)(N241), note that there exists a

one-to-one correspondence between Vand RN . Specifically, each polynomial

pe 1P may be uniquely represented as a vector Ape RN . Conversely, each point

c RN corresponds to a polynomial pc . Now, consider the subsetTof
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which contains all those polynomials which are reducible. With the correspondence

noted above, ,6represents a subset tof RN. Since it may be shown [9] that

* ' is a set of measure zero in RN, "almost every" polynomial in more than one

variable is irreducible. In a probabilistic setting, this result states that a

polynomial pE JP is irreducible with probability one. It may also be shown, in

a style similiar to that in [9] , that the set of symmetric polynomials represents

a set of measure zero in RN. Thus, it follows that "almost every" polynomial in

two or more variables satisfies the constraints of Theorem 6. Consequently,

"almost every" 2-D sequence with finite support is uniquely defined (in the sense

of Theorems 3 and 5) by either the phase or magnitude of its Fourier transform.

Although the results which have been presented thus far have been confined

to sequences with finite support, an extension is easily made to those sequences

whose convolutional inverses have finite support. Specifically, let xi(nl,n2)

denote the convolutional inverse of a 2-D sequence x(nl,n 2 ), i.e.

x(nl,n2 ) * xi(nl,n 2 ) = 6(nl,n2 ) (59)

where 6(nl,n2) is the 2-D unit sample function. Now suppose that x(nl,n 2 ) is

a stable sequence which has a z-transform of the form

X(zlz 2) p(zl-z2) (60)

where p(zl,z 2 ) is a polynomial in Jr(ZlZ 2). In this case, the convolutional

inverse of x(n1,n2) has a z-transform given by
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x (Z1,Z2) P(Zz 2) 
(61)

so that xi E:F(nln 2)' In addition, the phase or magnitude of xi(ni,n2) is

uniquely defined by the phase or magnitude of 
x(nl,n 2) respectively:

= 1 (62a)

x 2  = _ x(wi,w2) (62b)

Therefore, if x(n1 ,n2 ) is a stable sequence with 
a z-transform given by (60),

then x(nsn2) is uniquely defined by its 
phase or magnitude if the polynomial

P(zl,z 2) satisfies the appropriate constraints.
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V. SUMMARY

In this paper, conditions have been developed under which a multi-dimensional

sequence is uniquely specified by the phase or magnitude of its Fourier transform.

These conditions were shown to include almost all sequences in two or more unknowns

which have finite support. Although it was initially assumed that either the phase

or magnitude was known for all frequencies, the uniqueness constraints were then

extended to include the case in which the phase or magnitude was specified over

a particular finite set of points.

The question of uniqueness, however, is only one aspect of the more general

problem of multi-dimensional signal reconstruction from phase or magnitude.

Although not considered in this paper, another important question concerns the

development of practical algorithms for reconstructing a multi-dimensional

sequence from either its phase or magnitude. A number of algorithms have been

developed for multi-dimensional signal reconstruction from phase which include

the extension of 1-D phase-only reconstruction algorithms [6] to higher dimensional

sequences. Reconstruction from magnitude, on the other hand, still remains an

area of active research. Although a few algorithms have been proposed (some

references may be found in [7] ), none appear to be suitable for the reconstruction

of arbitrary multi-dimensional sequences. Even beyond reconstruction algorithms,

another important issue which remains to be investigated is the sensitivity of

a multi-dimensional sequence to measurement errors in its phase or magnitude.

In particular, it is of interest to determine the effect on the reconstruction

of a sequence to noisy phase or magnitude information.
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